PVDF: The Specialized Filament For Chemical And Moisture Resistance

There’s a dizzying number of specialist 3D printing materials out there, some of which do try to offer an alternative to PLA, PA6, ABS, etc., while others are happy to stay in their own niche. Polyvinylidene fluoride (PVDF) is one of these materials, with the [My Tech Fun] YouTube channel recently getting sent a spool of PVDF for testing, which retails for a cool $188.

Some of the build plate carnage observed after printing with PVDF. (Credit: My Tech Fun, YouTube)
Some of the build plate carnage observed after printing with PVDF. (Credit: My Tech Fun, YouTube)

Reading the specifications and datasheet for the filament over at the manufacturer’s website it’s pretty clear what the selling points are for this material are. For the chemists in the audience the addition of fluoride is probably a dead giveaway, as fluoride bonds in a material tend to be very stable. Hence PVDF ((C2H2F2)n) sees use in applications where strong resistance to aggressive chemicals as well as hydrolysis are a requirement, not to mention no hygroscopic inclinations, somewhat like PTFE and kin.

In the video’s mechanical testing it was therefore unsurprising that other than abrasion resistance it’s overall worse and more brittle than PA6 (nylon). It was also found that printing this material with two different FDM printers with the required bed temperature of 110°C was somewhat rough, with some warping and a wrecked engineering build plate in the Bambu Lab printer due to what appears to be an interaction with the usual glue stick material. Once you get the print settings dialed in it’s not too complicated, but it’s definitely not a filament for casual use.

Continue reading “PVDF: The Specialized Filament For Chemical And Moisture Resistance”

The Browser Wasn’t Enough, Google Wants To Control All Your Software

A few days ago we brought you word that Google was looking to crack down on “sideloaded” Android applications. That is, software packages installed from outside of the mobile operating system’s official repository. Unsurprisingly, a number of readers were outraged at the proposed changes. Android’s open nature, at least in comparison to other mobile operating systems, is what attracted many users to it in the first place. Seeing the platform slowly move towards its own walled garden approach is concerning, especially as it leaves the fate of popular services such as the F-Droid free and open source software (FOSS) repository in question.

But for those who’ve been keeping and eye out for such things, this latest move by Google to throw their weight around isn’t exactly unexpected. They had the goodwill of the community when they decided to develop an open source browser engine to keep the likes of Microsoft from taking over the Internet and dictating the rules, but now Google has arguably become exactly what they once set out to destroy.

Today they essentially control the Internet, at least as the average person sees it, they control 72% of the mobile phone OS market, and now they want to firm up their already outsized control which apps get installed on your phone. The only question is whether or not we let them get away with it.

Continue reading “The Browser Wasn’t Enough, Google Wants To Control All Your Software”

Receiving Radio Signals From Space Like It’s 1994

For certain situations, older hardware is preferred or even needed to accomplish a task. This is common in industrial applications where old machinery might not be supported by modern hardware or software. Even in these situations though, we have the benefit of modern technology and the Internet to get these systems up and running again. [Old Computers Sucked] is not only building a mid-90s system to receive NOAA satellite imagery, he’s doing it only with tools and equipment available to someone from this era.

Of course the first step here is to set up a computer and the relevant software that an amateur radio operator would have had access to in 1994. [Old Computers Sucked] already had the computer, so he turned to JV-FAX for software. This tool can decode the APT encoding used by some NOAA satellites without immediately filling his 2 MB hard drive, so with that out of the way he starts on building the radio.

In the 90s, wire wrapping was common for prototyping so he builds a hardware digitizer interface using this method, which will be used to help the computer interface with the radio. [Old Computers Sucked] is rolling his own hardware here as well, based on a Motorola MC3362 VHF FM chip and a phase-locked loop (PLL), although this time on a PCB since RF doesn’t behave nicely with wire wrap. The PCB design is also done with software from the 90s, in this case Protel which is known today as Altium Designer.

In the end, [Old Computers Sucked] was able to receive portions of imagery from weather satellites still using the analog FM signals from days of yore, but there are a few problems with his build that are keeping him from seeing perfectly clear imagery. He’s not exactly sure what’s wrong but he suspects its with the hardware digitizer as it was behaving erratically earlier in the build. We admire his dedication to the time period, though, down to almost every detail of the build. It reminds us of [saveitforparts]’s effort to get an 80s satellite internet experience a little while back.

Continue reading “Receiving Radio Signals From Space Like It’s 1994”

The (Data) Plot Thickens

You’ve generated a ton of data. How do you analyze it and present it? Sure, you can use a spreadsheet. Or break out some programming tools. Or try LabPlot. Sure, it is sort of like a spreadsheet. But it does more. It has object management features, worksheets like a Juypter notebook, and a software development kit, in case it doesn’t do what you want out of the box.

The program is made to deal with very large data sets. There are tons of output options, including the usual line plots, histograms, and more exotic things like Q-Q plots. You can have hierarchies of spreadsheets (for example, a child spreadsheet can compute statistics about a parent spreadsheet). There are tons of regression analysis tools, likelihood estimation, and numerical integration and differentiation built in.

Continue reading “The (Data) Plot Thickens”

Acoustic Coupling Like It’s 1985

Before the days of mobile broadband, and before broadband itself even, there was a time where Internet access was provided by phone lines. To get onto a BBS or chat on ICQ required dialing a phone number and accoustically coupling a computer to the phone system. The digital data transmitted as audio didn’t have a lot of bandwidth by today’s standards but it was revolutionary for the time. [Nino] is taking us back to that era by using a serial modem at his house and a device that can communicate to it through any phone, including a public pay phone.

As someone in the present time can imagine, a huge challenge of this project wasn’t technical. Simply finding a working public phone in an era of smartphones was a major hurdle, and at one point involved accidentally upsetting local drug dealers. Eventually [Nino] finds a working pay phone that takes more than one type of coin and isn’t in a loud place where he can duct tape the receiver to his home brew modem and connect back to his computer in his house over the phone line like it’s 1994 again.

Of course with an analog connection like this on old, public hardware there were bound to be a few other issues as well. There were some quirks with the modems including them not hanging up properly and not processing commands quickly enough. [Nino] surmises that something like this hasn’t been done in 20 years, and while this might be true for pay phones we have seen other projects that use VoIP systems at desk phones to accomplish a similar task.

Continue reading “Acoustic Coupling Like It’s 1985”

Screenshot of AVRpascal

Pascal? On My Arduino? It’s More Likely Than You Think

The Arduino ecosystem is an amazing learning tool, but even those of us who love it admit that even the simplified C Arduino uses isn’t the ideal teaching language. Those of us who remember learning Pascal as our first “real” programming language in schools (first aside from BASIC, at least) might look fondly on the AVRPascal project by [Andrzej Karwowski].

[Andrzej] is using FreePascal’s compiler tools, and AVRdude to pipe compiled code onto the micro-controller. Those tools are built into his AVRPascal code editor to create a Pascal-based alternative to the Arduino IDE for programming AVR-based microcontrollers. The latest version, 3.3, even includes a serial port monitor compatible with the Arduino boards.

This guy, but with Pascal. What’s not to love?

The Arduino comparisons don’t stop there: [Andrzej] also maintains UnoLib, a Pascal library for the Arduino Uno and compatible boards with some of the functionality you’d expect from Arduino libraries: easy access to I/O (digital and analog ports) timers, serial communication, and even extras like i2c, LCD and sensor libraries.

He’s distributing the AVRPascal editor as freeware, but it is not open source. It’s too bad, because Pascal is a great choice for microcontrollers: compiled, it isn’t much slower than C, but it can be as easy to write as Python. Micropython shows there’s a big market for “easy” embedded programming; Pascal could help fill it in a more performant way. Is the one-man license holding this project back, or is it just that people don’t use Pascal much these days?

While AVR programming is mostly done in C, this is hardly the first time we’ve seen alternatives. While some have delved into the frightening mysteries of assembly, others have risen to higher abstraction to run LISP or even good old fashioned BASIC. Pascal seems like a good middle road, if you want to go off the beaten path away from C.

Via reddit.

JuiceBox Rescue: Freeing Tethered EV Chargers From Corporate Overlords

The JuiceBox charger in its natural environment. (Credit: Nathan Matias)
The JuiceBox charger in its natural environment. (Credit: Nathan Matias)

Having a charger installed at home for your electric car is very convenient, not only for the obvious home charging, but also for having scheduling and other features built-in. Sadly, like with so many devices today, these tend to be tethered to a remote service managed by the manufacturer. In the case of the JuiceBox charger that [Nathan Matias] and many of his neighbors bought into years ago, back then it and the associated JuiceNet service was still part of a quirky startup. After the startup got snapped up by a large company, things got so bad that [Nathan] and others saw themselves required to find a way to untether their EV chargers.

The drama began back in October of last year, when the North American branch of the parent company – Enel X Way – announced that it’d shutdown operations. After backlash, the online functionality was kept alive while a buyer was sought.  That’s when [Nathan] and other JuiceBox owners got an email informing them that the online service would be shutdown, severely crippling their EV chargers.

Ultimately both a software and hardware solution was developed, the former being the JuicePass Proxy project which keeps the original hardware and associated app working. The other solution is a complete brain transplant, created by the folk over at OpenEVSE, which enables interoperability with e.g. Home Assistant through standard protocols like MQTT.

Stories like these make one wonder how much of this online functionality is actually required, and how much of it just a way for manufacturers to get consumers to install a terminal in their homes for online subscription services.