Ultra-Tiny Wii Uses Custom Parts And Looks Amazing

The Nintendo Wii was never a large console. Indeed, it was smaller than both the Xbox 360, PlayStation 3, and most consoles of previous generations, too. That’s not to say it couldn’t be smaller, though. [loopj] has built what is perhaps the smallest Wii yet, which measures roughly the same size as a deck of cards. The best bit? The housing is even to scale!

There’s no emulation jiggery-pokery here. This build uses an original Wii motherboard that’s been cut down to the bare basics. Measuring just 62 mm by 62 mm, it features the CPU, GPU, RAM, and flash memory, while most of the extraneous hardware has been eliminated. Power and data is provided to the board from a special Wii Power Strip PCB, while the Periphlex flex PCB handles breaking out controller interfaces. Indeed, the build is nicknamed Short Stack as it’s built from a number of specialist PCBs for builds like this one. It also uses two boards designed by [YveltalGriffin] — the fujiflex for HDMI video output and the nandFlex to handle the Wii’s NAND memory chip.

[loopj] also had to design two further PCBs specifically for this build. One handles power, the micro SD card, HDMI connector, and controller ports. Meanwhile, the second handles the power, reset, and sync buttons along with status LEDs. Another neat hack of [loopj]’s own devising is using TRRS connectors in place of the original bulky GameCube controller ports.

Ultimately, it’s volume is just 7.4% that of an original Nintendo Wii. It’s probably possible to go smaller, too, says [loopj], so don’t expect things to end here. We’ve seen some other great Wii mods before, too, like this excellent handheld design.

This Week In Security: Putty Keys, Libarchive, And Palo Alto

It may be time to rotate some keys. The venerable PuTTY was updated to 0.81 this week, and the major fix was a change to how ecdsa-sha2-nistp521 signatures are generated. The problem was reported on the oss-security mailing list, and it’s quite serious, though thankfully with a somewhat narrow coverage.

The PuTTY page on the vulnerability has the full details. To understand what’s going on, we need to briefly cover ECDSA, nonces, and elliptic curve crypto. All cryptography depends on one-way functions. In the case of RSA, it’s multiplying large primes together. The multiplication is easy, but given just the final result, it’s extremely difficult to find the two factors. DSA uses a similar problem, the discrete logarithm problem: raising a number to a given exponent, then doing modulo division.

Yet another cryptography primitive is the elliptic curve, which uses point multiplication as the one-way function. I’ve described it as a mathematical pinball, bouncing around inside the curve. It’s reasonably easy to compute the final point, but essentially impossible to trace the path back to the origin. Formally this is the Elliptic Curve Discrete Logarithm Problem, and it’s not considered to be quantum-resistant, either.

One of the complete schemes is ECDSA, which combines the DSA scheme with Elliptic Curves. Part of this calculation uses a nonce, denoted “k”, a number that is only used once. In ECDSA, k must be kept secret, and any repetition of different messages with the same nonce can lead to rapid exposure of the secret key.

And now we get to PuTTY, which was written for Windows back before that OS had any good cryptographic randomness routines. As we’ve already mentioned, re-use of k, the nonce, is disastrous for DSA. So, PuTTY did something clever, and took the private key and the contents of the message to be signed, hashed those values together using SHA-512, then used modulo division to reduce the bit-length to what was needed for the given k value. The problem is the 521-bit ECDSA, which takes a 521-bit k. That’s even shorter than the output of a SHA-512, so the resulting k value always started with nine 0 bits. Continue reading “This Week In Security: Putty Keys, Libarchive, And Palo Alto”

NASA’s Ingenuity Mars Helicopter Transitions Into Stationary Testbed

On April 16th NASA announced the formal end to Ingenuity’s days as the first ever Martian helicopter, following its 72nd and final flight mission in January. This flight ended with a rough landing during which the helicopter’s blades got damaged and separated, leaving the plucky flying machine with its wings clipped. During the final meet-up of the Mars Helicopter Team there was cake, but none for Ingenuity as its latest data set was reviewed by the team from 304 million kilometers away. This data confirms the latest software patch allows it to work stand-alone as a data collection platform.

With these latest software changes, Ingenuity will wake up daily, activate its computers and perform a self-check of all its components before collecting sensor data and images. The main goal of this is to collect long-term performance data on the helicopter’s systems, with enough onboard memory to allow for measurements to be stored for around 20 years. This means that although the Perseverance rover will have to trundle on without its flying mission buddy, one day in the future another rover, helicopter or primate will presumably drop by to either communicate with Ingenuity if it’s still alive, or harvest its memory unit for data retrieval.

Thanks to [Mark Stevens] for the tip.

Build Your Own RGB Fill Light For Photography

Photography is all about light, and capturing it for posterity. As any experienced photographer will tell you, getting the right lighting is key to getting a good shot. To help in that regard, you might like to have a fill light. If you follow [tobychui]’s example, you can build your own!

Colors!

The build relies on addressable WS2812B LEDs as the core of the design. While they’re not necessarily the fanciest LEDs for balanced light output, they are RGB LEDs, so they can put out a ton of different colors for different stylistic effects. The LEDs are under the command of a Wemos D1, which provides a WiFI connection for wireless control of the light.

[tobychui] did a nice job of building a PCB for the project, including heatsinking to keep the array of 49 LEDs nice and cool. The whole assembly is all put together inside a 3D printed housing to keep it neat and tidy. Control is either via onboard buttons or over the WiFi connection.

Files are on GitHub if you’re seeking inspiration or want to duplicate the build for yourself. We’ve seen some other similar builds before, too. Meanwhile, if you’re cooking up your own rad photography hacks, don’t hesitate to let us know!

PC Watercooling Prototype Is Pumpless

Watercooling is usually more efficient than air cooling for the same volume of equipment, and — important for many people — it is generally quieter. However, you still have water pump noises to deal with. [Der8auer] got a Wieland prototype cooler that doesn’t use a pump. Instead, it relies on the thermosiphon effect. In simple terms, the heat moves water — possibly boiling it — upwards to a radiator. Once the water is cool, it falls down back to the heat exchanger again.

It looks like any other AIO, but the block is extremely flat compared to normal coolers, which have the pump on top of the plate. As you might expect, orientation matters, and you can’t have tight bends in the hoses. The system also has to be totally airtight to function properly. The test was meant to be against a commercial AIO unit with the same number of fans. However, there was a problem, and the final test was done with a larger radiator with one of its three fans removed.

The prototype performed fine and was quiet. It didn’t do as well as the commercial cooler, but it wasn’t bad. Of course, this is a prototype. Maybe a final product will do better. Around the ten-minute mark, the IR camera came out, and it didn’t show any major unexpected hot spots.

We’ve seen water-cooled printer hotends, and pumping is a problem there. We wondered if this technology might work there. The whole thing reminded us of heat pipes without the internal wick to move cold working fluid. We’ve even seen a water-cooled calculator.

Continue reading “PC Watercooling Prototype Is Pumpless”

Computing Via (Virtual) Dominos

Back in 2012, [Matt Parker] and a team built a computer out of dominos for the Manchester Science Festival. [Andrew Taylor], part of the team that built the original,  has built a series of virtual domino puzzles to help explain how the computer worked. He also links to a video from the event, but be warned: the video contains some spoilers for the puzzles. If you are ready for spoilers, you can watch the video below.

The original computer could add two three-bit numbers and provide a four-bit result. We don’t want to give away the answers, but the inverter is quite strange. If you don’t want to puzzle it out, you can press the “reveal answer” to see [Andrew’s] solutions. Press “play” and watch the dominos fall.

Continue reading “Computing Via (Virtual) Dominos”

Remove Wall Plugs Fast With A Custom Tool

The best thing about buying your own home is that you can hang things on the walls. It’s a human right all too often denied to renters the world over. Regardless, five years later, when you’re doing the mandatory minimalist remodel, you’ll be ruing the day you put in all those wall anchors. At that point, consider removing them with this nifty tool from [XDIY with Itzik].

The design aims to remove wall anchors as cleanly as possible. It’s easiest to watch the video to get the idea of how it works.

The tool features a block which holds a bearing. That bearing acts as a rotating stop for a wood screw. The idea is that you place the block against the wall, and use a power drill to drive a wood screw into the anchor at high speed. The screw can’t move forward, so the threads basically yank the plug out of the wall, and relatively neatly at that. Once removed, there’s a little push stopper you can use to hold the old plug in place as you remove the wood screw from the device, ready to go again.

[Itzik] demonstrates the device by removing ten wall plugs in just 40 seconds. If you’ve got a lot to do, or it’s a job you do regularly, you might like to have this tool in your kit.

Oftentimes, having the right tool can make a job ten times faster, and this seems like one of those cases. Video after the break.

Continue reading “Remove Wall Plugs Fast With A Custom Tool”