Phonenstien Flips Broken Samsung Into QWERTY Slider

The phone ecosystem these days is horribly boring compared to the innovation of a couple decades back. Your options include flat rectangles, and flat rectangles that fold in half and then break. [Marcin Plaza] wanted to think outside the slab, without reinventing the wheel. In an inspired bout of hacking, he flipped a broken Samsung zFlip 5 into a “new” phone.

There’s really nothing new in it; the guts all come from the donor phone. That screen? It’s the front screen that was on the top half of the zFlip, as you might have guessed from the cameras. Normally that screen is only used for notifications, but with the Samsung’s fancy folding OLED dead as Disco that needed to change. Luckily for [Marcin] Samsung has an app called Good Lock that already takes care of that. A little digging about in the menus is all it takes to get a launcher and apps on the small screen.

Because this is a modern phone, the whole thing is glued together, but that’s not important since [Marcin] is only keeping the screen and internals from the Samsung. The new case with its chunky four-bar linkage is a custom design fabbed out in CNC’d aluminum. (After a number of 3D Printed prototypes, of course. Rapid prototyping FTW!)

The bottom half of the slider contains a Blackberry Q10 keyboard, along with a battery and Magsafe connector. The Q10 keyboard is connected to a custom flex PCB with an Arduino Micro Pro that is moonlighting as a Human Input Device. Sure, that means the phone’s USB port is used by the keyboard, but this unit has wireless charging,so that’s not a great sacrifice. We particularly like the use of magnets to create a satisfying “snap” when the slider opens and closes.

Unfortunately, as much as we might love this concept, [Marcin] doesn’t feel the design is solid enough to share the files. While that’s disappointing, we can certainly relate to his desire to change it up in an era of endless flat rectangles.  This project is a lot more work than just turning a broken phone into a server, but it also seems like a lot more fun.

Continue reading “Phonenstien Flips Broken Samsung Into QWERTY Slider”

Applying Thermal Lining To Rocket Tubes Requires A Monstrous DIY Spin-caster

[BPS.space] takes model rocketry seriously, and their rockets tend to get bigger and bigger. If there’s one thing that comes with the territory in DIY rocketry, it’s the constant need to solve new problems.

Coating the inside of a tube evenly with a thick, goopy layer before it cures isn’t easy.

One such problem is how to coat the inside of a rocket motor tube with a thermal liner, and their solution is a machine they made and called the Limb Remover 6000 on account of its ability to spin an 18 kg metal tube at up to 1,000 rpm which is certainly enough to, well, you know.

One problem is that the mixture for the thermal liner is extremely thick and goopy, and doesn’t pour very well. To get an even layer inside a tube requires spin-casting, which is a process of putting the goop inside, then spinning the tube at high speed to evenly distribute the goop before it cures. While conceptually straightforward, this particular spin-casting job has a few troublesome difficulties.

For one thing, the uncured thermal liner is so thick and flows so poorly that it can’t simply be poured in to let the spinning do all the work of spreading it out. It needs to be distributed as evenly as possible up front, and [BPS.space] achieves that with what is essentially a giant syringe that is moved the length of the tube while extruding the uncured liner while the clock is ticking. If that sounds like a cumbersome job, that’s because it is.

The first attempt ended up scrapped but helped identify a number of shortcomings. After making various improvements the second went much better and was successfully tested with a 12 second burn that left the tube not only un-melted, but cool enough to briefly touch after a few minutes. There are still improvements to be made, but overall it’s one less problem to solve.

We’re always happy to see progress from [BPS.space], especially milestones like successfully (and propulsively) landing a model rocket, and we look forward to many more.

Continue reading “Applying Thermal Lining To Rocket Tubes Requires A Monstrous DIY Spin-caster”

No Need For Inserts If You’re Prepared To Use Self-Tappers

As the art of 3D printing has refined itself over the years, a few accessories have emerged to take prints to the next level. One of them is the threaded insert, a a piece of machined brass designed to be heat-set into a printed hole in the part. They can be placed by hand with a soldering iron, or for the really cool kids, with a purpose-built press. They look great and they can certainly make assembly of a 3D printed structure very easy, but I’m here to tell you they are not as necessary as they might seem. There’s an alternative I have been using for years which does essentially the same job without the drama. Continue reading “No Need For Inserts If You’re Prepared To Use Self-Tappers”

Checking Out A TV Pattern Generator From 1981

The picture on a TV set used to be the combined product of multiple analog systems, and since TVs had no internal diagnostics, the only way to know things were adjusted properly was to see for yourself. While many people were more or less satisfied if their TV picture was reasonably recognizable and clear, meaningful diagnostic work or calibration required specialized tools. [Thomas Scherrer] provides a close look at one such tool, the Philips PM 5519 GX Color TV Pattern Generator from 1981.

This Casio handheld TV even picked up the test pattern once the cable was disconnected, the pattern generator acting like a miniature TV station.

The Philips PM 5519 was a serious piece of professional equipment for its time, and [Thomas] walks through how the unit works and even opens it up for a peek inside, before hooking it up to both an oscilloscope and a TV in order to demonstrate the different functions.

Tools like this were important because they could provide known-good test patterns that were useful not just for troubleshooting and repair, but also for tasks like fine-tuning TV settings, or verifying the quality of broadcast signals. Because TVs were complex analog systems, these different test patterns would help troubleshoot and isolate problems by revealing what a TV did (and didn’t) have trouble reproducing.

As mentioned, televisions at the time had no self-diagnostics nor any means of producing test patterns of their own, so a way to produce known-good reference patterns was deeply important.

TV stations used to broadcast test patterns after the day’s programming was at an end, and some dedicated folks have even reproduced the hardware that generated these patterns from scratch.

Continue reading “Checking Out A TV Pattern Generator From 1981”

The Sense And Nonsense Of Virtual Power Plants

Over the past decades power grids have undergone a transformation towards smaller and more intermittent generators – primarily in the form of wind and solar generators – as well as smaller grid-connected batteries. This poses a significant problem when it comes to grid management, as this relies on careful management of supply and demand. Quite recently the term Virtual Power Plant (VPP) was coined to describe these aggregations of disparate resources into something that at least superficially can be treated more or less as a regular dispatchable power plant, capable of increasing and reducing output as required.

Although not actual singular power plants, by purportedly making a VPP act like one, the claim is that this provides the benefits of large plants such as gas-fired turbines at a fraction of a cost, and with significant more redundancy as the failure of a singular generator or battery is easily compensated for within the system.

The question is thus whether this premise truly holds up, or whether there are hidden costs that the marketing glosses over.

Continue reading “The Sense And Nonsense Of Virtual Power Plants”

Build Your Own Pip-Boy Styled Watch

[Arnov Sharma]’s latest PIP-WATCH version is an homage to Pip-Boys, the multi-function wrist-mounted personal computers of Fallout.

We like the magnetic clasp on the back end.

[Arnov] has created a really clean wearable design with great build instructions, so anyone who wants to make their own should have an easy time. Prefer to put your own spin on it, or feel inspired by the wrist-mounted enclosure? He’s thoughtfully provided the CAD files as well.

Inside the PIP-WATCH is a neat piece of hardware, the Lilygo T-Display-S3 Long. It’s an ESP32-based board with a wide, touch-enabled, color 180 x 640 display attached. That makes it a perfect fit for a project like this, at least in theory. In practice, [Arnov] found the documentation extremely lacking which made the hardware difficult to use, but he provides code and instructions so there’s no need to go through the same hassles he did.

In addition to the Hackaday.io project page, there’s an Instructables walkthrough.

If you put your own spin on a Pip-boy (whether just a project inspired by one, or a no-detail-spared build of dizzying detail) we want to hear about it, so be sure to drop us a tip!

Continue reading “Build Your Own Pip-Boy Styled Watch”

Remembering The Intel Compute Stick

Over the years Intel has introduced a number of new computer form factors that either became a hit, fizzled out, or moved on to live a more quiet life. The New Unit of Computing (NUC) decidedly became a hit with so-called Mini PCs now everywhere, while the Intel Compute Stick has been largely forgotten. In a recent video by the [Action Retro] one such Compute Stick is poked at, specifically the last model released by Intel in the form of the 2016-era STK1AW32SC, featuring a quad-core Intel Atom x5-Z8330 SoC, 2 GB of RAM and 32 GB eMMC storage.

As the name suggests, this form factor is very stick-like, with a design that makes it easy to just plug it into the HDMI port of a display, making it a snap to add a computer to any TV or such without taking up a considerable amount of space. Although Intel didn’t make more of them after this model, it could be argued that devices like the Chromecast dongle follow the same general concept, and manufacturers like MeLe are still making new PCs in this form factor today.

In the video this 2016-era Compute Stick is put through its paces, wiping the Windows 10 installation that was still on it from the last time it was used, and an installation of Haiku was attempted which unfortunately failed to see the eMMC storage. Worse was the current Ubuntu, which saw its installer simply freeze up, but MX Linux saved the day, providing a very usable Linux desktop experience including the watching of YouTube content and network streaming of Steam games.

Although dissed as ‘e-waste’ by many today, if anything this video shows that these little sticks are still very capable computers in 2025.

Continue reading “Remembering The Intel Compute Stick”